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1. INTRODUCTION

The NASA JPL Deep Space Network (DSN) of large,
dual reflector antennas is subject to continuing demands
for improved performance and reliability as a result of
communications, control, and radio science
requirements for future missions.

As a consequence, a new generation of 34m Beam
Waveguidc (BWG)  antennas is being added to the
existing complement of 34m and 7001 casscgrain-like
antennas, and X-band (8.42 GHz) and Ka-band  (32
GHz) transmitting and receiving systems, the latter
utilizing stable, total power radiometers (1’PRs),  arc
being implemented throughout the system to
complement the existing S-X-band capability.

These developments have in turn established the need
for a set of easy to usc and reliable tools for the
assessment, calibration, and ilnprovcmcrtt  of the
performance of a large number of antenna systems.

In this paper wc describe a new approach being taken
for the measurement of antenna gain and pointing, as
well as the calibration of radio sources used in the
antenna gain assessment. The companion paper (Part 2)
discusses panel and subreflector  alignment, and antenna
stability.

As a result of a systematic analysis of the entire
measurement procedure, with fmticu]ar  attention to the
no i se  cha rac t e r i s t i c s  o f  t he  TPR p l u s  t h e
tropospherically induced radiometer fluctuations, and
the implementation of new techniques for data
acquisition and reduction, it has been possible to obtain
measurement precision yielding up to an order of
magnitude improvement over previous methods in the
determination of antenna aperture efficiency, and
factors of five or more in the determination of pointing
errors and antenna beamwidth.  This improvement has
been achieved by performing crmtitluous, rapid raster
scans of both extended and point radio sources.

The significance of improvements in antenna calibration
and performance in the DSN can be put in perspective
by recognizing that each dB of improvement in the
quantity G/T is estimated to be worth about $80 million
in terms of mission support capability [Clauss  (1 )].

In the following section we describe the general
requirements for the DSN antenna calibration effort.
This is followed by a discussion of current methods, and
their shortcomings, and a final section describes the new
approach being taken, and some early results.

2. CAI.IBRATION  SYSTEM REQUIREhlENTS

The performance of a DSN antenna must be accurately
characterized at the time it comes on line as a new
instrument. Also, certain characteristics must be
checked periodically to maintain performance as well as
assess the cause of, and correct for any observed
anomaly during normal tracking of a spacecraft.

l’hc initial calibration consists of precision setting of the
individual main reflector panels, and subreflector
alignment by means of microwave holography,
discussed in part 2 of this paper, the determination of
aperture efficiency vs antenna elevation angle, and the
dcvcloprncn(  of a suitable pointing model to permit
accurate antenna pointing.

All of the measurements needed to carry out these
calibrations involve far field  observations of
monochromatic signals transmitted by satellite beacons,
or broadband radiation from various celestial sources.
Holography measurements arc typically carried out at X
or Ku-band, based on the availability and elevation of
suitable satellite signals, while the remaining
measurements utilize S, X, rrnd Ka-band frequencies,
depending on the equipment planned for the particular
antenna under test.

In all cases some form of sampling of the source
radiation as a function of antenna offset from [he source
is carried out, the exact nature of which, as well as the
subsequent data processing, determine the precision and
accuracy achieved in the overall calibration effort.

In the following section we briefly describe, and point
oat the deficiencies of the conventional approach that
has been used in aperture efficiency and pointing
measurements. The remainder of the paper is devoted to
a discussion of the approach now being pursued to
significantly improve these n~casurcmcnts,

3. CONVENTIONAL APPROACH TO APERTURE
E~FIcIENcy & polNTING  MEASUREMENTS

Antenna aperture efficiency, q, may be defined by the
equation

2kTCr
q = —–—– , 1)

AS
where k=1301tzmann’s constant, T=system  noise
temperature increase due to the source, Cr=source  size
correction factor, A=antcnna  physical area, and
S=sourcc flux density. Each of the quantities T, C,,
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“ and S represents a source of error, and the mcasurcmcnt
method used to determine each must thus be addressed
in any search for improvement.

3.1 Source size correction factor

The source size correction factor is designed to account
for the flux density of an extended source not collected
by the antenna, and is best understood with refcrcncc  to
the fundamental radiometric  equation from which
equation 1 is derived,

kTv(r#;&@) =

+nv(v)A Jpwno%(we’  -0,0’-  @)ffQ’  , 2)
$,!,,,, c

where Bv is the source brightness function, Pn ,, is the

normalized antenna power pattern, and (O,@)  are
rectangular, angular coordinates relative to the source
center [Krauss (2)]. Here, we have been specific
regarding the dependence of various quantities on tbc
antenna elevation angle, I+/, and the operating
frequency, V, as well as the fact that the measured
system noise temperature increase duc to the source,
T,,, depends on the antenna pointing.

The integral appearing in equation 2 is the source flux
density collected by the antenna, and is smaller than the
total source flux density

s“ = jJ Bv(e, @)dQ, 3)
,<!.,,  <

unless the source is much smaller in extent than the
antenna main beam, and the antenna is accurately
pointed at the source. Equation 2 may bc cast into the
form of equation I by defining the source size
correction factor,

cr,v(rf/)  = ‘v ->],
s.,,,,,.(v)

4)

where

!,,,,,( , 1,,,.,,

is the maximum flux density collected by the antenna,
i.e., the antenna temperature field, TV(V;  O, @), must bc

explored at a given elevation until the maximum value
is found. It should be noted that the corresponding
coordinates will not be those for the source ccntcr
unless the source happens to be symrnctric.

Equations 4 and 5 imply that the determination of
C,,V(V)  requires a knowledge of the source brightness
function and the normalized antenna power pattern. For
those circumstances where C, ,(ry)  is within a fcw

percent of 1, the usual approach to its cvalttation  has
been to estimate both of these functions by symmetric
gaussians, in which case the oft qt.toted formula

c: =]+(@, /@B)’,

where 0S and @~ are the source and bcarn widths,

respectively, is obtained.

However, many commonly used sources have
corrections approaching 100 % for a Iargc antenna
operated at high frcqtrency. The 70111 antenna valttc for
Virgo A at Ka-band,  for example, is calculated to bc
1.90, and even at S-band this source has a 70n~
C,= 1.205 [Richter (3)]. Under these circumstances the

computation of the source size correction must be
carr ied out w i t h  rnorc realistic functional
representations of the source structure, and the source of
these has been brightness maps measured with
intcrferomctcr  arrays, or Iargc antennas such as the
100n] telescope at Bonn.

It is possible, in principle, to carry out a proper
deconvoltttion of such maps to compute equation 5.
l’bus, an average brightness map obtained with an
antenna having an equivalent normalized power pattern
~,,n(O,  r#) is given by

fl,,(O, @) = + ~~ B(O’, @’)~,n (0 - r3’,  @ - @’)dQ’,  6)
() W.r, .

where Q,, is the equivalent measuring beam solid angle,
and wc now drop the explicit frequency and elevation
angle notation, and for simplicity assume beam
symmetry so that the integral has the  form of a
convoltttic~n.  l’hen, taking the Fourier transform of
equations 5 and 6 wc have

i(}(, v) = ~(~f, v) fi(p,v),

E,, (//, v) = + i(p, v)~,n(p, v),

from which wc obtai~)
~(p,  v) -q}l, v) = Q,, v— I@, v), 7)
4,. (L v)

so that performing the inverse Fourier transform yields
S,,,ll. This procedure has in fact been used to generate

the C, values currently used in the DSN for calibration
purposes, but the approach has a number of limitations
which bccomc serious at high frequencies:

1. Maps arc usually not available at the frequency of
interest so that an interpolation procedure must be used
to estimate a map at the required frequency.
2. Large antennas have significant flcxurc  as a function
of elevation angle due to gravitational loading resulting
in aberrations that affect the beam pattern, so that one
really should have C, valtrcs  calculated as a function of
elevation (see equation 4).
3. Information on the mapping beam solid angle and
shape is often approximate or unavailable in the
literature.

An alternative approach is thus called for which
eliminates the need for source size corrections, and this
approach is described in a following section.
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“ 3.2 Flux density

Since source flux densities are determined from the
same equation used to detcrmirrc  aperture efficiency,
equation 1, all of the sources of error attendant the latter
must apply to the former as well. ‘Ilus,  while the very
brightest sources can be measured with a low gain
system such as a horn, whose calibration is relatively
straightforward, the transfer of information from strong
to weak sources which are compact enough to serve as
reasonable calibrators for large antennas must be carried
out with larger antennas. Then, equation 1 leads to the
result

S,TC.J_L.- 8)
y 7;C’JJ

where the subscripts refer to measurements of two
different sources with the same antenna, and wc see that

not only antenna temperatures, but also source size
corrections enter into the calculation of flux density
ratios for different sources.

A survey of the literature on flux density rncasurcmcnts
shows that tbc use of inaccurate C, values contributes
significantly to the error budget for such measurements
[Richter (4)], so that eliminating the need for such a
correction would result in a significant increase in the
accuracy of flux density determinations.

3.3 Source temperature

The basic method for measuring the system noise
temperature increase due to a source involves some
form of on-source, off-source subtraction. In the DSN
this is presently accomplished by a borcsight  technique
in which the antenna is successively offset in a given
direction, say (3, relative to the source, by *5, + 112,
and zero half-power bcarnwidths  (H PBW’S). The
resulting 5 data points are then fitted to a gaussian
function plus a linear background to account for the
dccreasc in system noise tcrnperaturc with elevation,
and from this fit, the maximum, or peak source
temperature, and O pointing error and bcamwidth  arc
dctertnincd. The pointing error is then used to exccutc
an orthogonal boresight in the @ direction, and the
process repeated as the source is tracked.

While this works well at S-band, it is Icss satisfactory at
X-band, and unsatisfactory at Ka-band,  especially with
regard to the pointing determination, where, for
example, it has been unable to proviclc  the requisite
precision to meet the radio science requirements for the
Cassini mission to Saturn, schcdulcd for launch in
October, 1997. Additionally, the method is inherently
slow since each of the 5 measurements in a given
direction requires that the antenna servos and
mechanical structure settle at the offset specified before
a temperature measurement is made. A further problem
is that the gaussian fitting functic]n only approximates
the actual profile of the temperature measurement, and
for an extended source this approximation may not bc
very good.

In view of these limitations one would like to have a
source temperature rncasurernent  of inherently greater
accuracy. This would not only improve our knowledge
of antenna gain and pointing, but would also improve
the calibration of weak sources by the comparison
method described above.

In the following section wc describe a new approach to
the calibration of large, ground based antennas that
significantly improves the precision achieved by
reducing or eliminating the above noted sources of error
inherent with present methods.

4. THE RASTER-SCAN hlETHOIJ

The kcy to reducing the error sources discussed in the
previous section lies in making system noise
tctnperaturc  measurements over a finite area of sky
including the source, rather than along orthogonal cuts
through the temperature profile. Thus, integration of
equation 2 over the two dimensional angular field
(O,@) gives

k jj T(O, @)dQ = : TIAQS, 9)
,,.,,,.
+k., ”,

where Q is the antenna bean] solid angle, and we have
dropped the explicit frequency and elevation angle
notation for simplicity.

If wc now consider the application of the above
equation to two sources, the equivalent of equation 8
bccornes

1 o)

.1,.,.

+IWJ”,

a result indepcnderrt of source sim corrections.

If the source considered in equation 9) is small enough
relative to the main beam to be considered a point, then
its brightness may bc represented by

B(o, f#J)  = sp6(e)6(@) , 11)

where 6(x) is the Dirac delta function. Then, equations
4 and 5 show that Cr=l so that equation 1 becomes

~ _ 2~TP 12)
ASP “

If the flux density, Sp, of this point source is known,
then equation 12 immediately yields the aperture
efficiency in terms of the peak source temperature.
However, it frequently is the case that point sources
bright enough for calibration purposes are also variable,
so that onc may not have apriori knowledge of .SP. In

this case, equation 10 may be used to determine Sp by
comparison with an extended, calibrated source whose
flux density, SC, k known. Then, combining equations
10 and 12 we have
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which now becomes the fundamental ectuation for
determining aperture efficiency.

Ile data for the computation implied by equation 13 arc
the temperature fields T,(O, @) and TC(O, @) for the

point and extended calibration source, respectively, and
these are obtained by scanning the antenna beam across
the source in a raster pattern, similar to a (non-
interlaced) TV scan (see below).

It should be noted here that the ratio of the integrals
appearing in equation 13 is, by equation 10, just the
ratio of the flux densities for the two sources, i.e., a
constant. Thus, the measurement strategy should
involve the alternate scanning of the two sources over a
small but finite elevation change so that the data points
corresponding to each integral, as a function of
elevation, can be fitted to a linear, or perhaps quadratic
function. Then, it should be found that the ratio of these
two fitting functions is constant and equal to Sc/SP . As
a practical matter the extended calibration source 3C274
(Virgo A) and the variable point source 3C273 serve
admirably for such a strategy as they have nearly the
same R.A.

Substitution of equation 11 into equation 2 gives the
result

so that the raster scan data set for the point  source has a
functional dependence determined by the beam pattern
plus a background term due to the sky, which may be
linearly approximated over the small fietd scanned.
Thus, if we assume that the antenna is in good
alignment, there are small system aberrations, and the
main reflector is nearly uniformly illuminated, which is
close to the truth for the shaped reflector designs of the
DSN, then ?(O, @) can be well approximated by an
asymmetric Airy pattern

so that the system temperature data set for the point
source raster scan has the form

T, (tI,@)
16)

= TPA[%O  –  f?))  q(o  –  4 ’ . ) ]  +  ?,p +  %F +  @$

where K9 and K+ are beamwidth  parameters, 6,, and

r#Jo are the pointing errors, and a, and a. arc the sky

background coefficients for the 0 and @ directions,

and T(,P is the system operating temperature.

The 8 parameters appearing in equation 16 may be
found from a nonlinear, least squares fit to the point
source raster scan data, thus giving complete

information on the peak tcmpcraturc,  and  pointing
errors and heamwidths  for the two orthogonal directions
corresponding to the scan axes. The precision of the
resulting fit witl depend on the noise fluctuations
present in the temperature data, the scan parameters,
and the data processing used, and these are dealt with in
the following sections.

4.1 Fluctuations in system noise temperature

Three main sources of fluctuation of system noise
temperature can be identified:

1. Thermal noise generated in the radiometer and
atmosphere,
2. Gain-bandwidth variations in the radiometer caused
by ambient temperature fluctuations of electronic
components, especially in the first stages,
3. Fluctuations caused by variations in tropospheric
density, especially of water vapor content. This is most
significant at Ka-band.

lhc two-sided power spectral density (PSD) of the
output fluctuations of a typical DSN Ka-band
radiometer has been measured as a function of
fluctuation frequency over the range 6.5 x 10-5 to 0.5
Hz,, and the results compared with a model based on the
above mechanisms. The results are shown in Figure 1,
where curve ~ corresponds to the radiometer looking at
an ambient load and curve ~. was obtained with it
looking at the zenith sky.

Curve G is a fit to curve ~ decreased by the square of the
ratio of the system operating noise temperatures,

Ill?,, ,n,h T ~ 14.6, and curve ~ corresponds to a“p Ay

statistical model for tropospheric fluctuations for
average conditions at the DSN complex at Goldstone,
California [Trcuhaft  and Lanyi (5)].

Curve ~, which is constant at high frequencies and

follows a l/~’ dependence at low frequencies,
corresponds to thermal noise and gain-bandwidth
variations, and if these were the only terms present with
the radiometer looking at the zenith sky, the data of
curve ~ would follow curve g. There is a significant
departure from this however, but when curves c and d
are added together the result follows curve b closely,
from which we conclude that tropospheric fluctuations
play an important role in the total radiometer
fluctuations at frequencies below about 0.1 Hz.

Since we are interested in frccluencies  greater than 10-3

Hz when making gain calibrations, i.e., times of interest
are considerably shorter than 1000 see, we may consider
only the high frequency behavior of the Treuhaft-Lanyi

model, which has a l/~S’J ctcpcndence  so that curve b
may bc represented by the equation

17)
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where the coefficients for the K ~-band radiometer tested
have the values

S,, = 1.50x 10-4 K’ /Hz

K, =I.64x1O”’ K2/scc

K, = 2.36X 10-7 K’ /SCC’”

corresponding to average weather with the radiornctcr
looking at the zenith sky, and a ?,P of approximately

100K.

With the above form for the PSD of the fluctuations,
one may determine the corresponding standard
deviation of the fluctuations. This depends on both the
integration time, 7, i.e., the period over which the
measurements are averaged by the power meter, and, in
view of the nonstationary behavior indicated by
equation 17, the total duration of the nmasurcmcnt,  7.

It can be shown that the variance of a random
process X(t) , of duration T, having a high frequency
cutoff, is given by

cr~(T) = 2~~[1 – sinc2(@T)]SX(~)c~, 18)

where sine(x) = sin(.x)/x,  and SX(~) is the PSD of the

process. If the signal X(t)  is continuously averaged
over a time interval 7, the resulting PSI) is

S1(~)  == sinc2(@r)Sx(~), 1 9)

so that the variance of the averaged process ~,[, (t), of

duration T, is

a; (~, T). .
20)

= 2~~[1 -- sinc2(@T)~inc2  (@) ST,,, (~)d~.

The evaluation of this integral for the spectrum given by
equation 17 is accomplished by contour integration,
with the result ———

/

s 27r2K,
o,,,, (7, T) = ~ + — 7 ’ +  18.3 K2T5° , 21)

7 3
where it has been assumed that the measurement
duration is considerably longer than the integration
time, i.e., 7’>>7.

The duration of the measurement of interest in the raster
scan method depends on the rate at which the data arc
taken, and the details of the analysis. I:or example, if
one were to operate at a lower frequency than K a-band,

the 7“” term in the above equation, corresponding to
tropospheric fluctuations, would be absent, and if a
radiometer gain calibration were carried out at the
conclusion of each line of the scan, then the appropriate
time would be the time required for the execution of a
single scan line. Generally speaking, however, 7’ will
be the time required for one complete raster, and an
important conclusion to be drawn from equation 18 is
the need fc)r s}lort rncasurernent times. This, perhaps
counterintuitive  conclusion, has been born out in actual
tests as will be shown below.

4.2 Raster scan design

Equation 21, together with the need to avoid settling
problems with the antenna mechanical system, suggest
that the raster scan should be performed with a
continuous motion at a constant, high angular velocity
in a given direction, say 0, while discontinuously
stepping in the orthogonal direction, again, mimicking a
TV scan. This means that the data arc taken “on the fly”,
so that the averaging process referred to above will
contribute to a distortion of the signal that must be taken
into account.

A second, and related consideration is selection of the
sampling interval, f,, . In view of the Fourier transform

relationship between the complex, far field amplitude,
Un(O, r#), and the complex aperture field, C(X, y), the
scan signal for a single line is absolutely bandlimited.

Thus, for a coherent detection scheme such as that used
in the microwave holography system, which also uses a
raster scan for-mat, the signal is of the form VUn(8t,  @),

where V is an arbitrary amplitude factor related to the
antenna gain, and O is the constant scan angular
velocity, and one may show that the spectrum of this
signal has, by virtue of the clearly defined antenna
aperture, a sharp cutoff at & = ~/2@~ , where

0, = A/2a =antcnna  main bcarnwidth. This cutoff,
moreover, is independent of the main reflector
illumination and system aberrations, and depends only
on the maximum dimension of the aperture in the
scanned direction, 2a.

Similarly, for the noncoherent detection used in gain
rneasurcrncnts,  the signal is of the form

W(ef,(b) = vp(ef,@)12 ,
so that its spectrum is given by the autoconvolution  of
the coherent spectrum, and consequently has a cutoff
frequency twice as high.

From the above we infer that Nyquist sampling for a
coherent system requires a minimum of one sample per
bcarnwidth, while for a noncohcrent  system, a minimum
of two samples per beamwidth  is required.

Also, since the signal spectrum is bandlirnited  in both
cases, a sharp cutoff digital filter can be used to remove
noise above the cutoff, and this can then be followed by
a suitable Wiener filter to compensate for the distortion
introduced by the integration, with no loss of high
frequency information.

In order to study the interaction between scan velocity,
~, array size, N, and integration time, z, computations
have been made of the errors expected in the fitted
parameter T, for a range c)f values for each of these
parameters for a one-dimensional fit corresponding to a
single scan line, and the results are shown in Table 1. In
all cases the sampling interval, t, = 7/2.



The computed errors in TP arc based on a general,

nonlinear least-squares fitting analysis, using
equation 21 to estimate the noise standard deviation,
and a gaussian  beam pattern

T,(O) = T, _CX+K:(~ - eo)2/2] 22)

There is, in fact, direct evidence that this is the case, in
that the complete two dimensional scans that were made
of the source showed a small, but clear indication of
sidelobe asymmetry, most likely resulting from a small
subrcflector  misalignment existing at the time of the
measurement.

rather than an Airy pattern, for simplicity [Richter (6)].
6. CONCLUSIONS

Also shown in Table 1 are the RMS fitting errors of
aperture efficiency vs elevation curves based on
quadratic fits to the data for a complete 6 hour pass of
the source. These errors are inversely proportional to

rN, , where N, is the number of complete rasters

executed during the pass, each of which yields an
estimate of all of the flttin.g parameters.

It is clear from these results that the best overall
precision is obtained with a high scan velocity and small
array size. Indeed, it appears from the analysis that tbc
limiting factor may WCII turn out to bc the behavior of
the antenna servo systcm and the dynamic response of
the mechanical structure.

S. TEST RESULTS

Table 2 presents a typical early test result based on a
single scan line through tbc source 3C273 with a 34m
BWG antcnmr at Kil-band.  The parameters, and their
errors obtained from the diagonal elements of the
covariance  matrix of the fit, are based on fitting the data
to equation 16 with @ = O. The theoretical errors for the
scan line are computed as above from a nonlinear, lcast-
squares analysis using equation 21 to estimate the noise
s(andarct deviation.

The last two columns show theoretical errors for the 5
point boresight method, described in section 3.3, using
the same nonlinear, least-squares analysis, and
measured errors obtained under essentially the same
conditions as for tbc scan line test.

It can be seen from the data in Table 2 that the
measured parameter errors obtained from tbc single
scan line are considerably smaller than those obtained
with the conventional bores ight tcchniquc.  l’hc
predicted errors based on the nonlinear, least-squares
analysis are seen to bc about a factor of two smaller
than those measured fcm the scan line, and roughly the
same factor smaller in the case of the borcsight
mcasurcrnents,  with the exception of the error for TP,
which agrees well with the measurement.

In the former case this can bc traced to the inadequacy
of the fitting function used. 1“’be  predicted noise
background for the scan Iinc, o, = 0.0242 K, is in,,,
very good agreement with the measured value,
crT = 0.0250 K, but the reduced chi-square  for the fit

,,
is 3.53 *0.35,  indicating that a significant part of tbc
parameter errors is the result of using a fitting function
that cannot foIlow  the data to within the limit imposed
by the random data errors.

A theoretical analysis of gain and pointing calibration
methods, together with a realistic assessment of system
noise characteristics, has led to the conclusion that
significant improvement in performance can be realized
by performing rapid, continuous raster scans of point
and extended radio sources, and determining
temperature and pointing information from two
dimensional, nonlinear, least-squares fits of the data to
realistic beam patterns.

The method has the further advantage that source size
corrections, which presently represent a significant
source of error in both gain measurements and source
flux density determinations, are not needed since
essentially all of the source flux density is collected
during the raster scan.

The usc of rapid scanning also results in the collection
of vastly more data than with conventional techniques,
so that errors in gain, or aperture efficiency vs elevation
curves can bc greatly reduced.

Preliminary measurements at Ka-band, based on one
dimensional fitting to single scan line data, are in good
agreement with theoretical calculations using measured
power spectral density data to predict the background
noise during a scan, and using this background noise as
input to a nonlinear, Icast-squares  model to predict
fitting parameter errors.

Future work will concentrate on the development of
real-time, two dimensional Levenberg-Marquardt
nonlinear fitting routines, assessment of antenna
mcchanica!  system limitations to the scan process, and
overall system engineering concerns for the
implementation of the method systcm wide.
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N=33 T, S~C  t,, s~c 1, Sec mdeg  0,, K o,, K CTT, K ~,,,, % N,
b, --- --–

Sec
0. I 1.6 118.8 50 0.037 0.123 0.034 0.060 181
().2 3,2 171.6 25 ().027 0.159 0,044 0.095 125
0,4 6.4 277.2 12.5 ().()26 0.232 0.064 0.176 77
0.8 12.8 488.4 6.24 (),024 ().369 0.101 0.370 44

~.(fi
T, sec t,, sec t, scc II)cjeo CT,, K a,, K cr~, K ~~l., , % N,

b, -----=
Sec

0.1 3.2 338.0 25 0.038 0.27S 0.038 0,115 63
0.2 6.4 546.0 12.5 0.029 0.405 0.055 0.215 -39

-.
-,



,

TABLE 2- Comparison of errors for source temperature TP, pointing offset, 6,,, and HPBW, OD, for a single scan line
through the point source 3C273, with those obtained with the boresight technique. Theoretical errors are computed from
the same ncmlinear, least-squares model used to predict the errors in Table 1. The frequency was 32 GHz, and the scan

parameters were: N = 21, 8 = 8.0 mdegkcc, ~ = 0.8 SCC, f,, = 0.4 SCC, with a total scan width of 64 mdeg.

Errors from Theoretical
Parameters from covariancc errors for scan
1- dirn’i fit matrix line

T, = 2.9428 K 0.0332 K 0.0149 K

6,, = 5.3463 mdeg 0.0898 rndeg 0.0427 MdC~

0, = 1 7 . 2 0 2 5  mdeg 02190  “’dcg 0.0986 mdcg

T,P = 114.5558 K 0.0250 K 0.0242 K

—
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